Pseudomonas aeruginosa: **Declassified**

William Norton Jr, PharmD

PGY1 Pharmacy Resident, Henrico Doctors' Hospital

November 8, 2023

I attest that I have no relevant interests, financial or otherwise, pertaining to this presentation

At the conclusion of this presentation, the learner will be able to...

Recognize risk factors for infection with *Pseudomonas aeruginosa*

Explain the mechanism of action of antimicrobials targeting *P. aeruginosa*

Interpret susceptibility and resistance patterns of *P. aeruginosa*

Describe treatment options when resistance in *P. aeruginosa* is present

VC is an 81-year-old female presenting to the emergency department complaining of high-grade fevers and general malaise for the past four days

- PMH: Hypertension, hyperlipidemia, osteoporosis
- Social history: Drinks 1 glass of wine with dinner daily. Denies tobacco or illicit drug use. Retired elementary school teacher.
- VS: HR 106bpm | RR 22bpm | T 102.1°F | BP 87/53mmHg | SpO₂ 98% RA
- WBC: 12.7cells/mm³ | Lactic Acid: 2.4mmol/L

A sepsis alert is called for this patient. What is appropriate empiric therapy?

MULTIDRUG-RESISTANT PSEUDOMONAS AERUGINOSA

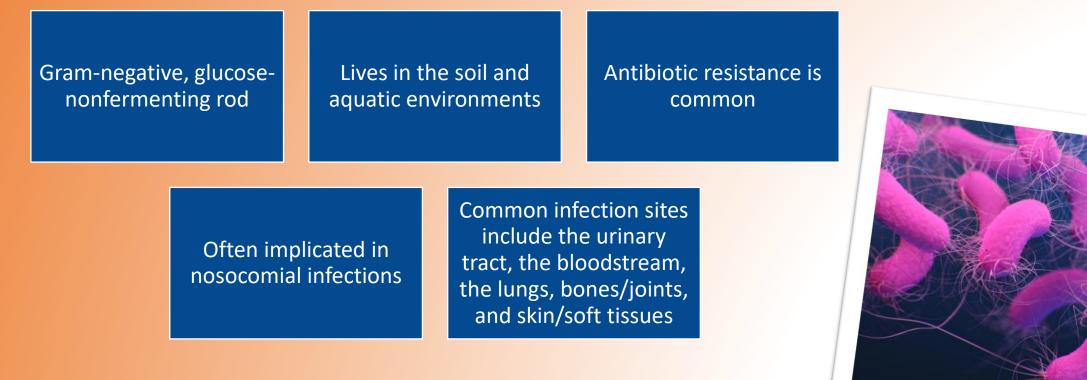
THREAT LEVEL SERIOUS

Estimated deaths in 2017


Multidrug-Resistant Pseudomonas aeruginosa. Centers for Disease Control and Prevention. 2019

Data from 2018-2020 are preliminary.

Outbreak of Extensively Drug-Resistant *Pseudomonas* aeruginosa Associated with Artificial Tears


- As of May 15, 2023, 81 patients across 18 states were infected with a rare strain of extensively drug-resistant (XDR) *Pseudomonas* aeruginosa
- Traced to several brands of artificial tears and eye ointments

Recalled in February of 2023

Background

What is Pseudomonas aeruginosa (P. aeruginosa)?

Bouglé et al. Intensive Care Med. 2022 Botelho et al. Drug Resist Updat. 2019 Pang et al. Biotechnol Adv. 2019 Maraolo et al. Int J antimicrobe Agents. 2020

Risk Factors

Who is at risk of *P. aeruginosa* urinary tract infection?

Patient Characteristics	<i>P. aeruginosa</i> UTI (N=525)	Non- <i>P. aeruginosa</i> UTI (N=2727)	P-Value		
Sex Ratio (M/F)	2	0.9	<0.01		
Age (year)	64.5 (17.3)	63.8 (16.6)	NS		
SAPS II Score	57.6 (93.8)	53.9 (85.1)	NS		
Duration of ICU stay before UTI (days)	23.5 (12.9)	15.2 (14.7)	<0.01		
Duration of urinary catheterization before UTI (days)	22.2 (18.4)	14.2 (14.1)	0.01		
Origin					
No hospitalization before admission – n (%)	262 (50%)	1473 (55%)	-		
Medical surgical unit – n (%)	214 (41%)	1088 (40%)	NS		
ICU – n (%)	45 (9%)	139 (5%)	<0.05		
NS: Not significant Data are presented as mean (standard deviation) unless otherwise noted					

Venier et al. Clin Microbiol Infect. 2012

Who is at risk of *P. aeruginosa* urinary tract infection?

Patient Characteristics	<i>P. aeruginosa</i> UTI (N=525)	Non- <i>P. aeruginosa</i> UTI (N=2727)	P-Value	
Antibiotic Exposure at ICU Admission	351 (67%)	1444 (54%)	<0.05	
Trauma patient	62 (12%)	370 (13%)	NS	
Type of diagnosis				
Medical	358 (68%)	1940 (71%)	NS	
Surgical	166 (32%)	774 (29%)		
Immunodeficiency	458 (12%)	2383 (11%)	NS	
Urinary catheterization before UTI	517 (98%)	2676 (98%)	NS	
NS: Not significant Data are presented as n (%) unless otherwise noted				

Venier et al. Clin Microbiol Infect. 2012

Who is at risk of *P. aeruginosa* urinary tract infection?

Presence of an indwelling urinary catheter

Increased length of hospital stay

Previous antibiotic therapy in preceding 30 days

ICU admission

Hooton et al. *Clin Infect Dis*. 2010 Venier et al. *Clin Microbiol Infect*. 2012 Gomila A, et al. *Infect Drug Resist*. 2018;11:2571-2581.

Who is at risk of P. aeruginosa bacteremia?

Risk Factor	Bacteremia Due to <i>P. aeruginosa</i> (n=15)	Bacteremia NOT Due to <i>P. aeruginosa</i> (n=325)	Total Number (%)	P-value
Hospitalization Within Previous 4 Weeks	7 (46.6%)	63 (19.3)	70 (20.6)	0.01
Invasive Procedure Within Previous 4 Weeks	3 (20%)	9 (2.7%)	12 (3.5%)	0.01
Surgery Within Previous 4 Weeks	3 (20%)	3 (0.9%)	6 (1.%)	0.001
Community-Onset Bacteremia	5 (33.3%)	271 (83.3%)	276 (81.2%)	< 0.001
Febrile Neutropenia	2 (13.3%)	4 (1.2%)	6 (1.8%)	0.02
Malignancy	8 (53.3%)	79 (24.3%)	87 (25.6%)	0.02

Data are presented as n (%) unless otherwise noted

Lee et al. Am J Emerg Med. 2012

Who is at risk of P. aeruginosa bacteremia?

Who is at risk of *P. aeruginosa* nosocomial pneumonia?

Patient Characteristics	<i>P. aeruginosa</i> pneumonia (N=967)	Non- <i>P. aeruginosa</i> Pneumonia (N=2870)	P-value	
Sex ratio (M/F)	2.1	2.3	NS	
Age (years)	64.2 (16)	60.5 (18.2)	<0.01	
SAPS II score	49.6 (17.8)	47.7 (18.3)	<0.01	
Length of ICU stay before onset of pneumonia (days)	14.8 (12.9)	10.8 (11.7)	<0.01	
Duration of mechanical ventilation before onset of pneumonia (days)	13.7 (12.3)	9.7 (9.4)	<0.01	
Number of reintubations before onset of pneumonia	0.8 (1.6)	0.6 (1.0)	<0.01	
Origin				
Number of hospitalizations before admission – n (%)	452 (47%)	1647 (57%)	-	
Medical unit – n (%)	434 (45%)	1077 (38%)	<0.01	
ICU – (%)	80 (8%)	144 (5%)	<0.01	
Data are presented as mean (standard deviation) unless otherwise noted 16				

Venier et al. J Hosp Infect. 2011

Who is at risk of *P. aeruginosa* nosocomial pneumonia?

Patient Characteristics	Patient with <i>P. aeruginosa</i> pneumonia (N=967)	Patient with non- <i>P. aeruginosa</i> pneumonia (N=2870)	P- value		
Antibiotics at admission	720 (75%)	1609 (57%)	<0.01		
Traumatic patient	85 (9%)	533 (19%)	<0.01		
Type of diagnosis					
Medical	692 (72%)	1961 (68%)	NS		
Surgical	274 (28%)	897 (32%)	NS		
Immunosuppression	145 (15%)	361 (13%)	0.04		
Non-invasive ventilation before onset of pneumonia	179 (19%)	498 (18%)	NS		
Mechanical ventilation before pneumonia	944 (98%)	2759 (96%)	0.03		
NS: Not significant Data are presented as n (%) unless otherwise noted					

NS: Not significant Data are presented as n (%) unless otherwise noted

Who is at risk of *P. aeruginosa* nosocomial pneumonia?

Intravenous antibiotics in the previous 90 days

Septic shock at the onset of VAP

ARDS preceding VAP

Five or more days of hospitalization prior to VAP

Acute renal replacement therapy prior to VAP

Advanced age

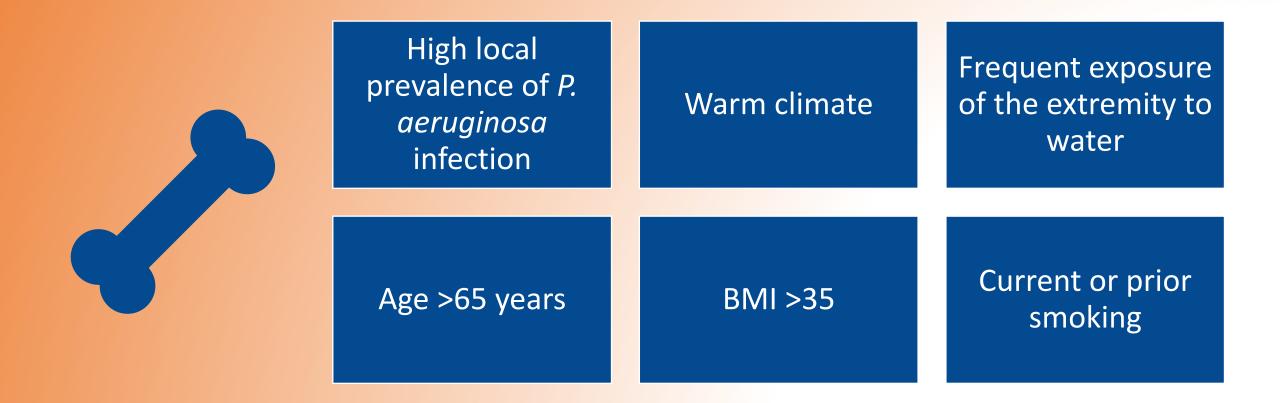
VAP: Ventilator-acquired pneumonia; ARDS: Acute Respiratory Distress Syndrome

Kalol et al. Clin Infect Dis. 2016; Venier et al. J Hosp Infect. 2011

Who is at risk of *P. aeruginosa* Community-Acquired Pneumonia?

Prior isolation of *P. aeruginosa* from a respiratory culture

Recent hospitalization AND receipt of intravenous antibiotics in the past 90 days


Metlay et al. Am J Respir Crit Care Med. 2019

Who is at risk of *P. aeruginosa* diabetic foot infection?

Risk Factor	Odds Ratio (95% CI)	Р
Age > 65 years	5.94 (1.4, 25.28)	0.016
$BMI > 35 kg/m^2$	7.53 (1.73, 32.81)	0.007
Former or current smoker	9.27 (1.06, 81.54)	0.045
History of a lower extremity bypass procedure	9.63 (1.52, 61.15)	0.016
Cardiovascular disease	5.28 (1.22, 22.86)	0.026
Severe infections	4.5 (0.97, 20.95)	0.055
BMI: Body Mass Index		

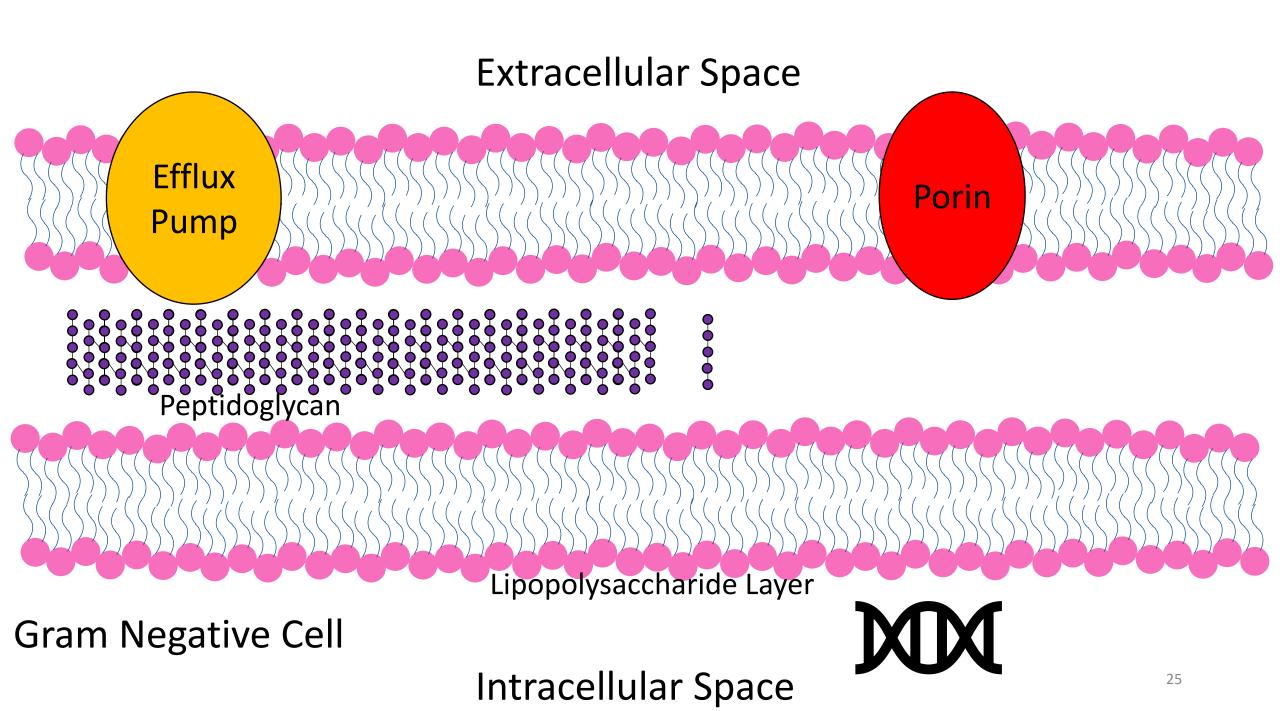
Farhat et al. Open Forum Infect. Dis. 2017

Who is at risk of *P. aeruginosa* diabetic foot infection?

Lipsky et al. Clin Infect Dis. 2012; Farhat et al. Open Forum Infect. Dis. 2017

Which of the following patients is at an increased risk of *Pseudomonas aeruginosa* being the causative organism of their pneumonia?

- A. A 17-year-old male who develops patchy infiltrates one day after being intubated in the emergency department for a severe asthma exacerbation
- B. A 67-year-old female with end-stage renal disease on dialysis three times weekly admitted for a traumatic hip fracture who develops a productive cough on hospital day 5 of her admission for total hip arthroplasty
- C. A 58-year-old male admitted following a stroke who aspirates while eating and subsequently develops patchy infiltrates on imaging
- D. A 31-year-old female who recently completed a course of oral amoxicillin/clavulanate for a sinus infection

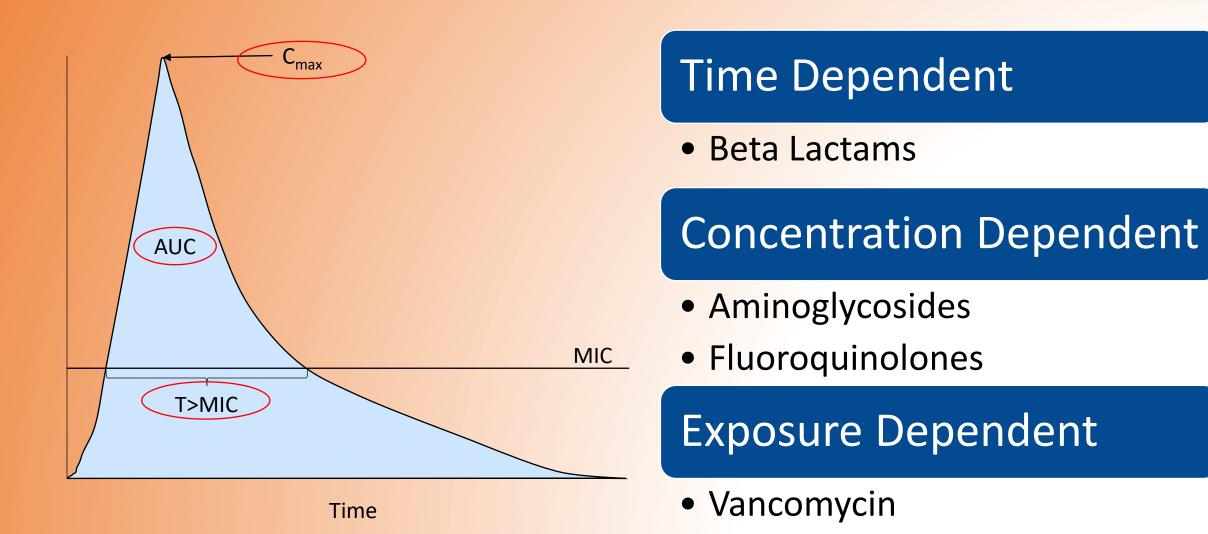

Knowledge Check: Objective 1

Antibiotic Mechanisms and Susceptibility

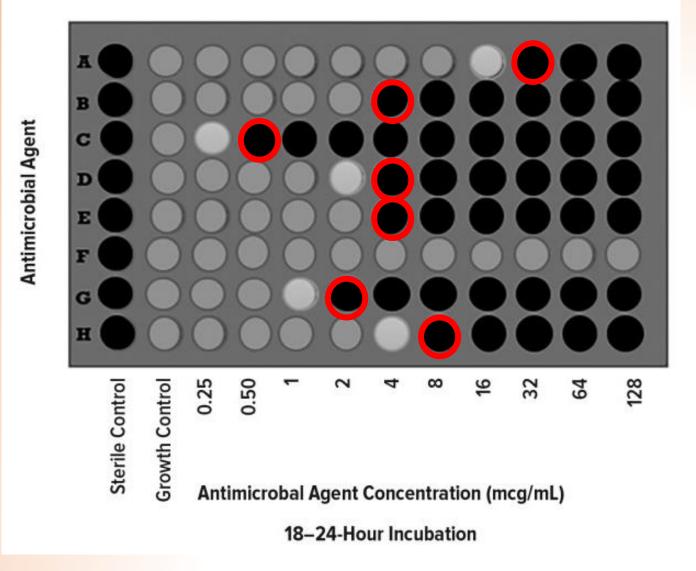
Antibiotics for P. aeruginosa

• Ciprofloxacin Fluoroquinolones • Levofloxacin • Piperacillin/Tazobactam • Cefepime **Traditional Beta-Lactams** • Meropenem • Imipenem/Cilastatin • Aztreonam Cefiderocol • Ceftolozane/Tazobactam **Novel Beta Lactams** • Imipenem/Cilastatin/Relebactam • Ceftazidime/Avibactam • Aminoglycosides **Miscellaneous** Agents • Polymyxins

Pang et al. Biotechnol Adv. 2019



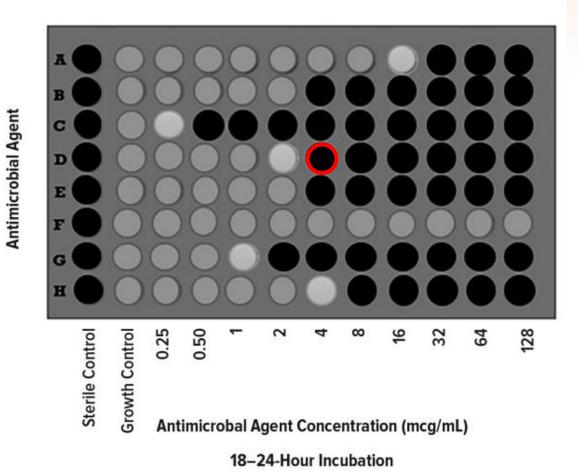
What antibiotic kills bacteria by inhibiting Penicillin-Binding-Protein mediated peptidoglycan crosslinking?


- A. Levofloxacin
- B. Gentamicin
- C. Cefepime
- D. Colistin

Knowledge Check: Objective 2

Pharmacodynamic Targets of Antibiotics

Susceptibility Testing


Giuliano et al. PT. 2019

The breakpoint of drug D against the cultured organism is 8mcg/mL

> Is this organism sensitive to drug D?

Knowledge Check

Yes! The MIC of 4mcg/mL falls below 8mcg/mL

Updated CLSI Breakpoints for *Pseudomonas aeruginosa*

Not Listed: Meropenem/Vaborbactam Ertapenem

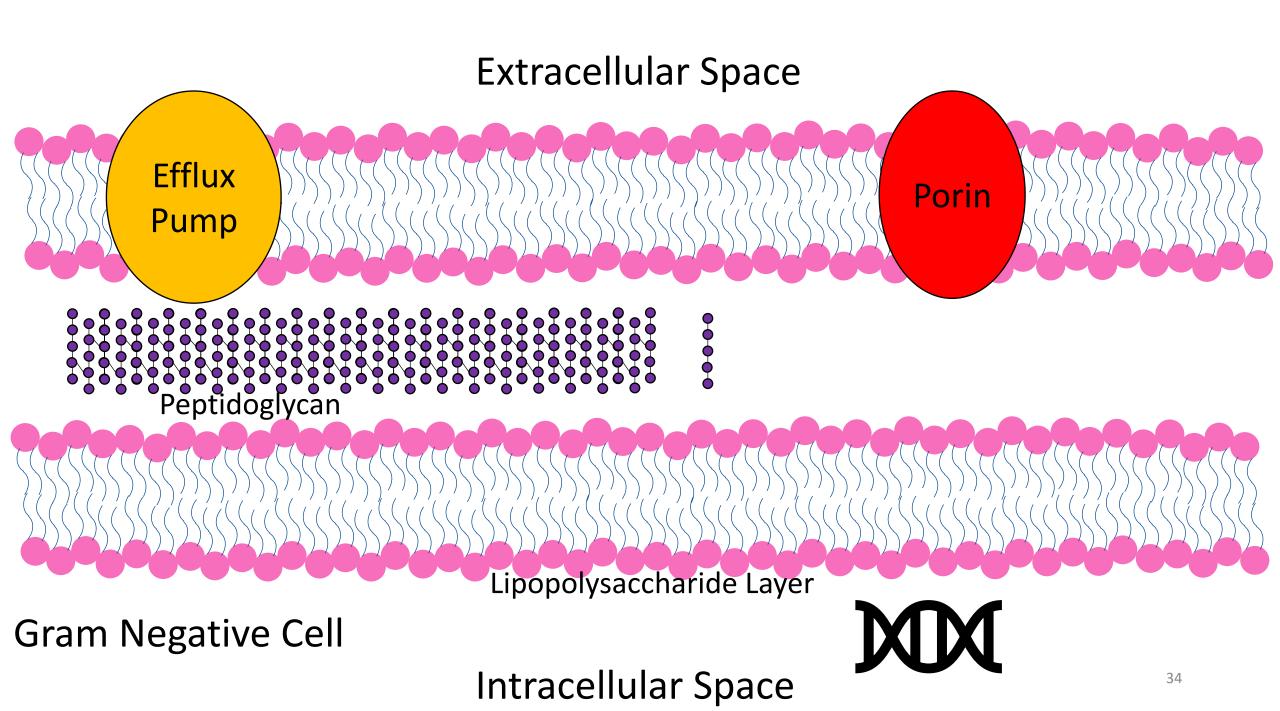
Antimicrobiol Acont	Interpretive Categories and MIC Breakpoints (mcg/mL) (Prev. Recommendatio		
Antimicrobial Agent	Sensitive	Intermediate	Resistant
Piperacillin/Tazobactam	≤16/4	32/4 (32-64/4)	≥64/4 (≥128)
Ceftazidime/Avibactam	≤8/4	-	≥16/4
Ceftolozane/Tazobactam	≤4/4	8/4	≥16/4
Imipenem/Relebactam	≤2/4	4/4	≥8/4
Ceftazidime	≤8	16	≥32
Cefepime	≤8	16	≥32
Cefiderocol	≤4	8	≥16
Aztreonam	≤8	16	≥32
Imipenem	≤2	4	≥8
Meropenem	≤2	4	≥8

2023 Performance Standards for Antimicrobial Susceptibility Testing, 33rd Edition, Clinical and Laboratory Sciences Institute. 2023

Updated CLSI Breakpoints for *Pseudomonas aeruginosa* (cont)

Antimicrobial Agent	Interpretive Categories and MIC Breakpoints (mcg/mL)		
Antimicrobial Agent	Sensitive	Intermediate	Resistant
Tobramycin	≤1 (≤4)	2 (8)	≥4 (≥16)
Amikacin (Urine only)	≤16	32	≥64
Gentamicin	-	_	-
Ciprofloxacin	≤0.5	1	≥2
Levofloxacin	≤1	2	≥4

2023 Performance Standards for Antimicrobial Susceptibility Testing, 33rd Edition, Clinical and Laboratory Sciences Institute. 2023


Based on the following culture and sensitivity report, this isolate of *P. aeruginosa* is susceptible to which antibiotic?

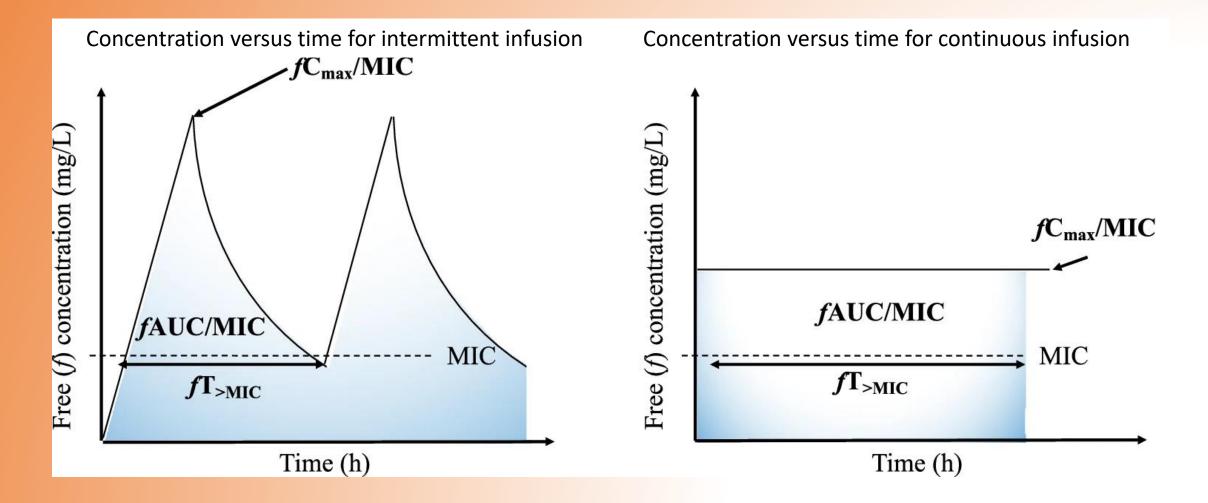
- A. Piperacillin/Tazobactam
- B. Cefepime
- C. Aztreonam
- D. Meropenem

Pseudomonas aeruginosa			
Antibiotic	MIC	Breakpoint	
Piperacillin/Tazobactam	32	≤16	
Cefepime	2	≤8	
Ceftazidime	64	≤8	
Aztreonam	16	≤8	
Meropenem	4	≤2	

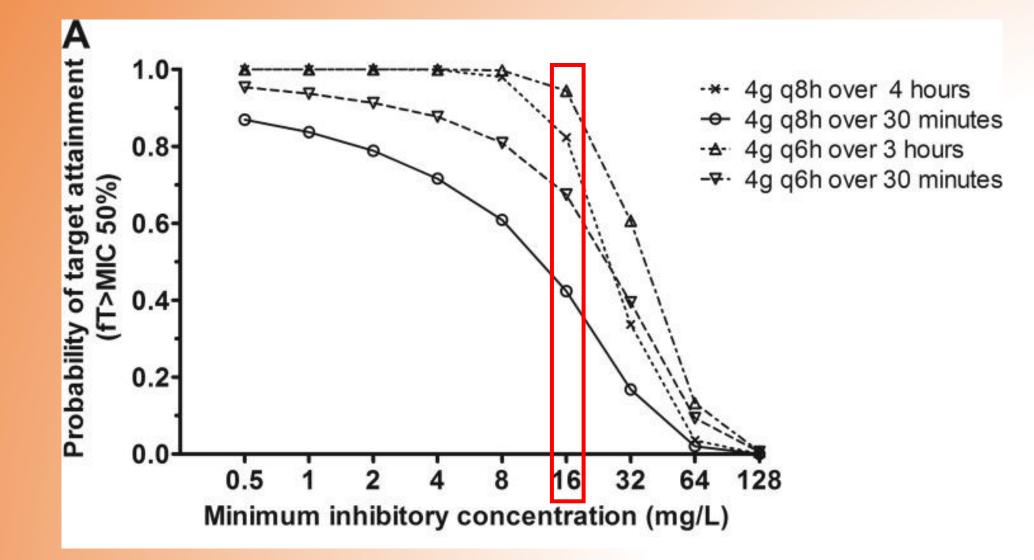
Knowledge Check: Objective 3

Resistance Among P. aeruginosa

Strategies for Overcoming Resistance


Increased Time Above MIC for Beta Lactams

Combination Therapy


Novel Agents

- Ceftolozane/Tazobactam
- Cefiderocol
- Ceftazidime/Avibactam
- Imipenem/Cilastatin/Relebactam

How Do We Increase Time Above MIC?

Extended Infusion Beta Lactams

Felton et al. Antimicrob Agents Chemother. 2012

Outcomes with Prolonged Infusion Beta-Lactams

Outcome		Relative Risk	95% Confidence Interval					
Severely III								
	Mortality	0.86	0.72, 1.02					
	Clinical Cure	1.1	1.03, 1.19					
	Microbiological Cure	1.21	1.08, 1.35					
		Non-Severely III						
	Mortality	1.06	0.52, 2.18					
	Clinical Cure	1	0.95, 1.06					
	Microbiological Cure	1.06	0.99, 1.15					

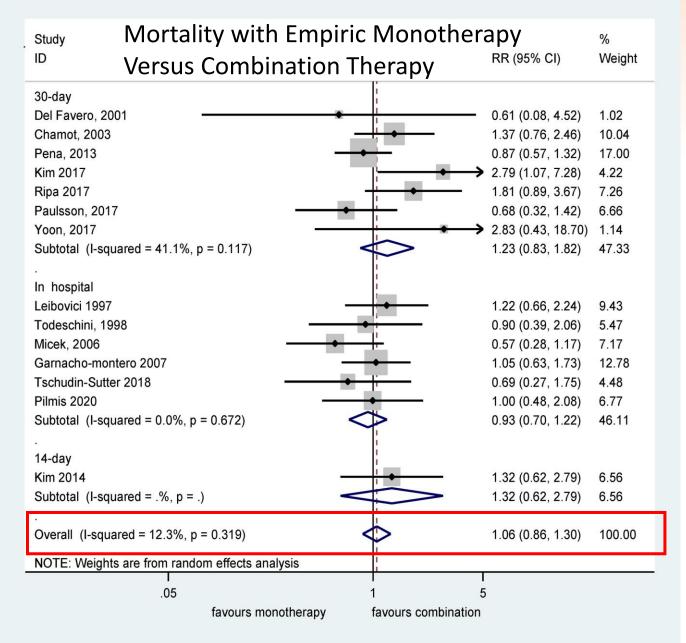
Recommendations

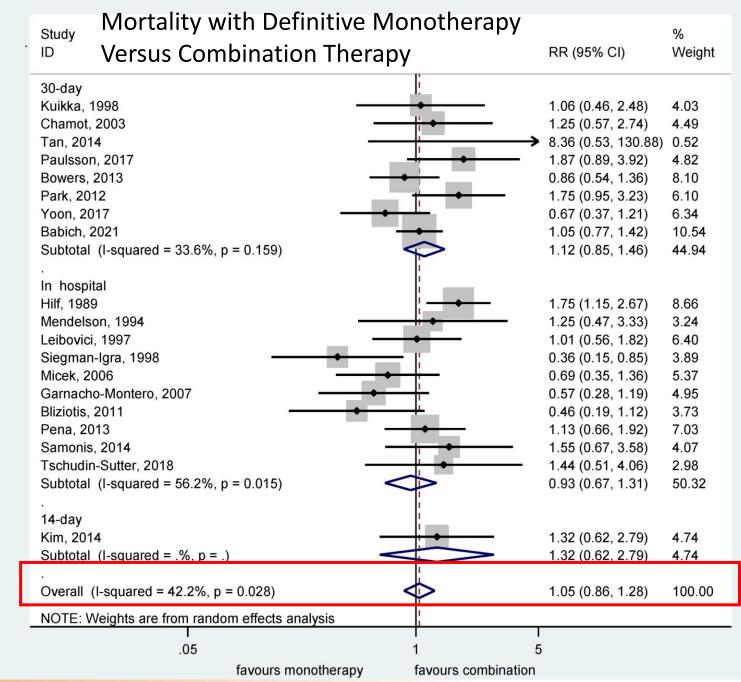
Extended infusion beta lactams should be preferred over intermittent dosing for severely ill patients, especially with gram negative infections

The panel cannot recommend extended infusion beta lactams over intermittent dosing in nonseverely ill patients due to lack of benefit

Combination Therapy

Typically an anti-pseudomonal beta-lactam and another agent


Proposed synergistic activity of combination therapy


Possible accelerated microbial clearance and reduced mortality

Onorato et al. Int J Antimicrob Agents. 2022

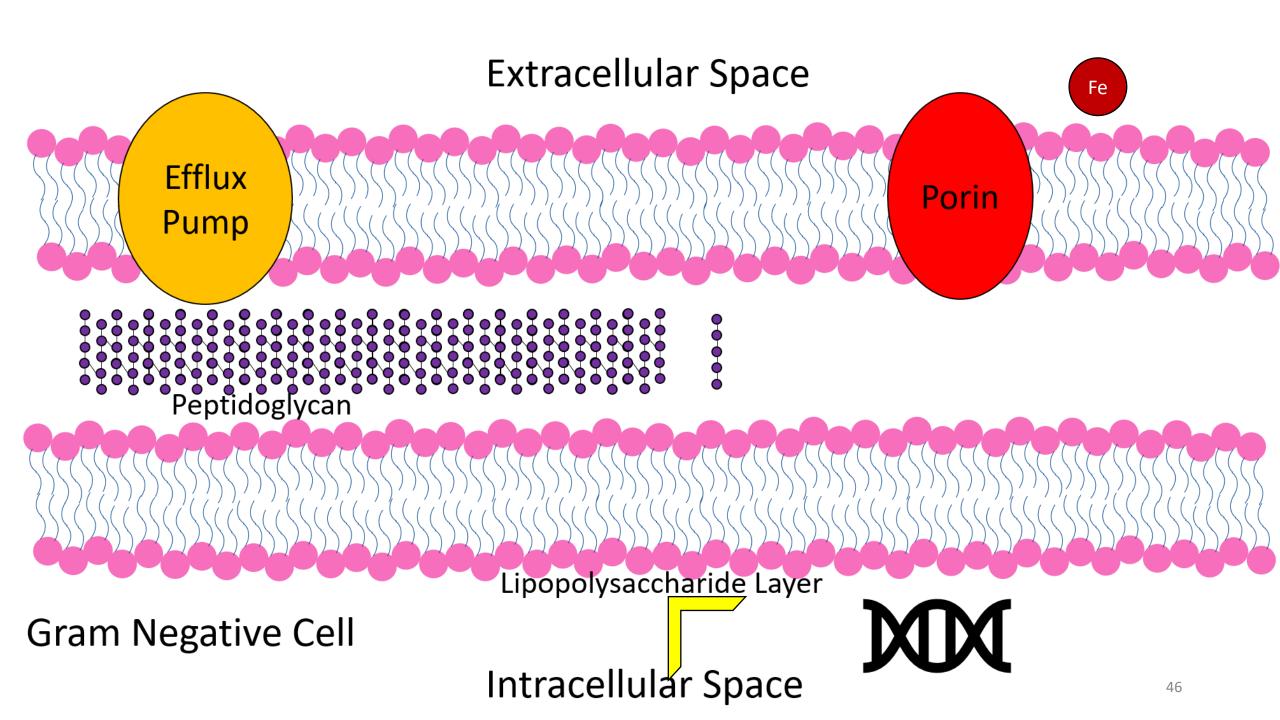
Combination Therapy

- Meta-analysis assessing combination versus monotherapy for *P. aeruginosa* bloodstream infection or pneumonia
- 35 studies were included in the analysis

Onorato et al. Int J Antimicrob Agents. 2022

Recommendations from the IDSA Pneumonia Guidelines

For patients who are in septic shock or at high risk for death when susceptibility results are known, **combination therapy** with 2 antibiotics to which the isolate is susceptible **is recommended**


For patients who are NOT in septic shock or at high risk for death when susceptibility results are known, monotherapy with an antibiotic to which the isolate is susceptible is recommended

Novel Agents

Cefiderocol

Ceftolozane/Tazobactam

Cefiderocol

Cefiderocol in Pneumonia (APEKS-NP)

Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP)

Study Design	Multicenter, randomized, controlled, double-blind, parallel study
Population	Patients with gram negative nosocomial pneumonia
Intervention	Cefiderocol versus extended infusion meropenem
Primary Outcome	All-cause mortality at day 14
Secondary Outcomes	 28-day all-cause mortality Clinical response Microbiological response
Population	Patients with gram negative nosocomial pneumonia
Intervention	Cefiderocol versus extended infusion meropenem
nderink et al. <i>Lancet Infect Dis</i> . 2021	47

Cefiderocol in Pneumonia (APEKS-NP) - Results

Outcome		Cefiderocol	Meropenem	Difference (95% CI)	
Mortality		18/145 (12.4)	17/146 (11.6)	0.8 (-6.7, 8.2)	
	P aeruginosa	2/24 (8.3)	3/23 (13)	-4.7 (-22.4,12.9)	
Cli	nical Cure	94/145 (64.8)	98/147 (66.7)	-1.8 (-12.7, 9)	
	P aeruginosa	16/24 (66.7)	17/24 (70.8)	-4.2 (-30.4, 22)	
Mi	crobiological Cure	59/145 (40.7)	61/147 (41.5)	-0.8 (-12.1, 10.5)	
	P aeruginosa	9/24 (37.5)	11/24 (45.8)	-8.3 (-36.1 <i>,</i> 19.5)	

Data are presented as n (%) unless otherwise noted

Wunderink et al. Lancet Infect Dis. 2021

Cefiderocol in Pneumonia (APEKS-NP) - Results

					Difference (95% CI)	
Mort	Mortality Summary:					
Р	Paeru Outcomoc with opfidorocol in posocomial					
Clinic		nia woro not cign	ificantly different	from	7, 9) 4, 22) , 10.5)	
Р	Paeru pheumonia were <u>not significantly different from</u>					
Micro	Mortality P aeru Clinical Cu P aeru Microbiol Mortality Summary: Outcomes with <u>cefiderocol</u> in nosocomial pneumonia were <u>not significantly different from</u> those with <u>meropenem</u>					
					l, 19.5)	

Data are presented as n (%) unless otherwise noted

Wunderink et al. Lancet Infect Dis. 2021

Cefiderocol in UTI

Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract
infections caused by Gram-negative uropathogens

Study Design	Phase 2, multicenter, randomized, double-blind, non- inferiority trial
Population	Adults (18 and older) with complicated urinary tract infection with or without pyelonephritis
Intervention	Cefiderocol 2g IV versus imipenem-cilastatin 1g IV q8h
Primary Outcome	Composite of clinical and microbiological response at test of cure
Secondary Outcomes	Microbiological responseClinical response

Cefiderocol in UTI

Study Endpoint		Cefiderocol (%)	Imipenem/Cilastatin (%)	Treatment Difference (95% Confidence Interval)
Composite response at TOC		183/252 (72.6%)	65/119 (54.6%)	18.6 (8.2 <i>,</i> 28.9)
	P aeruginosa	8/18 (44.4%)	3/5 (60%)	-
Micro at TO	biologic response C	184/252 (73%)	67/119 (56.3%)	17.3 (6.9, 27.6)
Clinica	al Response at TOC	226/252 (89.7%)	104/119 (87.4%)	2.4 (-4.7, 9.4)

Data are presented as n (%) unless otherwise noted

Portsmouth et al. Lancet Infect Dis. 2018

Cefiderocol in UTI

Study Endpoint				Treatment Difference (95% Confidence Interval)		
Composite response a Sur TOC Cer			mmary: fiderocol <u>significantly improved</u>			8.6 (8.2 <i>,</i> 28.9)
	P aeruginosa	microbiologic response in patients with				-
			urinary tract infections <u>versus</u> <u>imipenem-cilastatin</u>		.3 (6.9 <i>,</i> 27.6)	
Clinical Response at TOC		ОС	226/252 (89.7%)	104/119 (87.4%)	2	.4 (-4.7, 9.4)

Data are presented as n (%) unless otherwise noted

Portsmouth et al. Lancet Infect Dis. 2018

Cefiderocol for Any Severe Infection

Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR)

Population	dult patients with HAP/VAP, bloodstream infection, JTI, or sepsis due to carbapenem resistant organisms
	efiderocol 2g IV q8h versus standard of care per ovider discretion (up to 3 drugs maximum)
se	inical cure for HAP/VAP, bloodstream infection, or psis icrobiological eradication for urinary tract infection
-	I-cause mortality eatment-emergent adverse events 53

	Endpoint	Cefiderocol (n=101)	SOC (n=49)	
14-D	ay Mortality	19 (19%)	6 (12%)	
	Pneumonia	11 (24%)	3 (14%)	
	Bloodstream Infection	5 (17%)	1 (6%)	
	Urinary Tract Infection	3 (12%)	2 (20%)	
28-D	ay Mortality	25 (25%)	9 (18%)	
	Pneumonia	14 (31%)	4 (18%)	
	Bloodstream Infection	7 (23%)	2 (18%)	
	Urinary Tract Infection	4 (15%)	2 (20%)	
Mor	tality at End of Study	34 (34%)	9 (18%)	
	Pneumonia	19 (42%)	4 (18%)	-
	Bloodstream Infection	11 (37%)	3 (18%)	
	Urinary Tract Infection	4 (15%)	2 (20%)	Data
	Pseudomonas aeruginosa	2/11 (18%)	2/12 (18%)	unle

Cefiderocol for Any Severe Infection

Data are presented as n (%)

unless otherwise noted

Bassetti et al. Lancet Infect Dis. 2021

54

	Endpoint	Cefiderocol (n=101)	SOC (n=49)	Cefiderocol for		
14-D	ay Mortality	19 (19%)	6 (12%)			
Pneumonia		11 (24%)	3 (14%)	Any Severe		
	Bloodstream Infection	5 (17%)	1 (6%)	Infection		
	Urinary Tract Infection	3 (12%)	2 (20%)			
28-Day Mortality		25 (25%)	9 (18%)			
	Pneu <u>Cefiderocol</u> se	eemed to <u>i</u>	nortality only in			
	Bloo patients with a	<u>cUTI</u> , not	pneumoni	a or bloodstream		
	Urina infections, pote	entially due	e to <u>confo</u>	unding variables.		
Mort	tality at End of Study	34 (34%)	9 (18%)			
Pneumonia		19 (42%)	4 (18%)			
	Bloodstream Infection	11 (37%)	3 (18%)			
Urinary Tract Infection		4 (15%)	2 (20%)	Data are presented as n (%)		
	Pseudomonas aeruginosa	2/11 (18%)	2/11 (18%)	unless otherwise noted Bassetti et al. <i>Lancet Infect Dis</i> . 2021		

Ceftolozane/Tazobactam

Advantages of Ceftolozane/Tazobactam

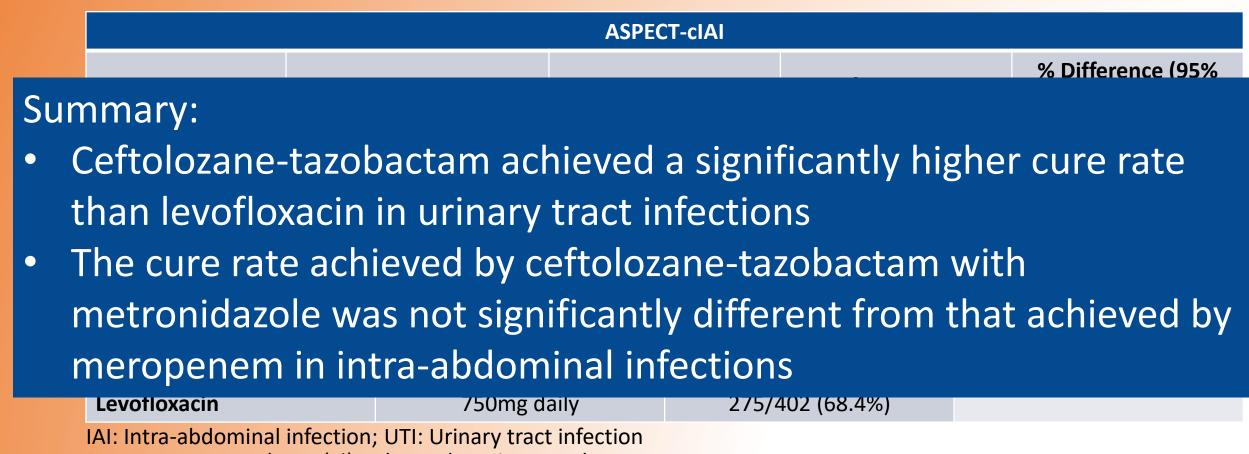
Novel cephalosporin with significant anti-*Pseudomonas* activity

Bulky side chain prevents efflux

More stable to degradation by AmpC

Its entry into the bacterial cell is independent of porin function

Higher affinity for essential PBPs without upregulating AmpC


Giacobbe et al. Expert Rev Anti Infect Ther. 2018

The Evidence for Ceftolozane/Tazobactam

	ASPECT-cIAI							
Arm		Drug	Do	se	Cure Rate		% Difference (95% Confidence Interval	
Active + Me		ane/Tazobactam 1000/500mg q8h + etronidazole 500mg q8h		323/389 (83%)		-4.2 (-8.9, 0.5)		
		eropenem	1000mg q8h 364/417 (87		364/417 (87.39	%)		
ASPECT-cUTI								
Drug		Dose		Cı	ire Rate		% Difference (95% onfidence Interval)	
Ceftolozane/Tazoba	actam	1000/500m	g q8h	306/3	398 (76.9%)		8.5 (2.3, 14.6)	
Levofloxacin		750mg da	aily	275/402 (68.4%)			0.3 (2.3, 14.0)	
IAI: Intra-abdominal Data are presented a								
in et al. <i>Clin Infect Dis</i>	. 2015						58	

Wagenlehner et al. Lancet. 2015

The Evidence for Ceftolozane/Tazobactam

Data are presented as n (%) unless otherwise noted

Solomkin et al. *Clin Infect Dis*. 2015 Wagenlehner et al. *Lancet*. 2015

Traditional, non-carbapenem beta lactams are preferred over carbapenems when sensitivities allow to avoid overuse

Traditional, non-carbapenem beta lactams are preferred over carbapenems when sensitivities allow to avoid overuse

Ceftolozane/Tazobactam, Ceftazidime/Avibactam, Imipenem/Cilastatin/Relebactam, and Cefiderocol are preferred for DTR-*P. aeruginosa* urinary tract infections

Traditional, non-carbapenem beta lactams are preferred over carbapenems when sensitivities allow to avoid overuse

Ceftolozane/Tazobactam, Ceftazidime/Avibactam, Imipenem/Cilastatin/Relebactam, and Cefiderocol are preferred for DTR-*P. aeruginosa* urinary tract infections

The same agents are preferred for infections outside the urinary tract, except for cefiderocol

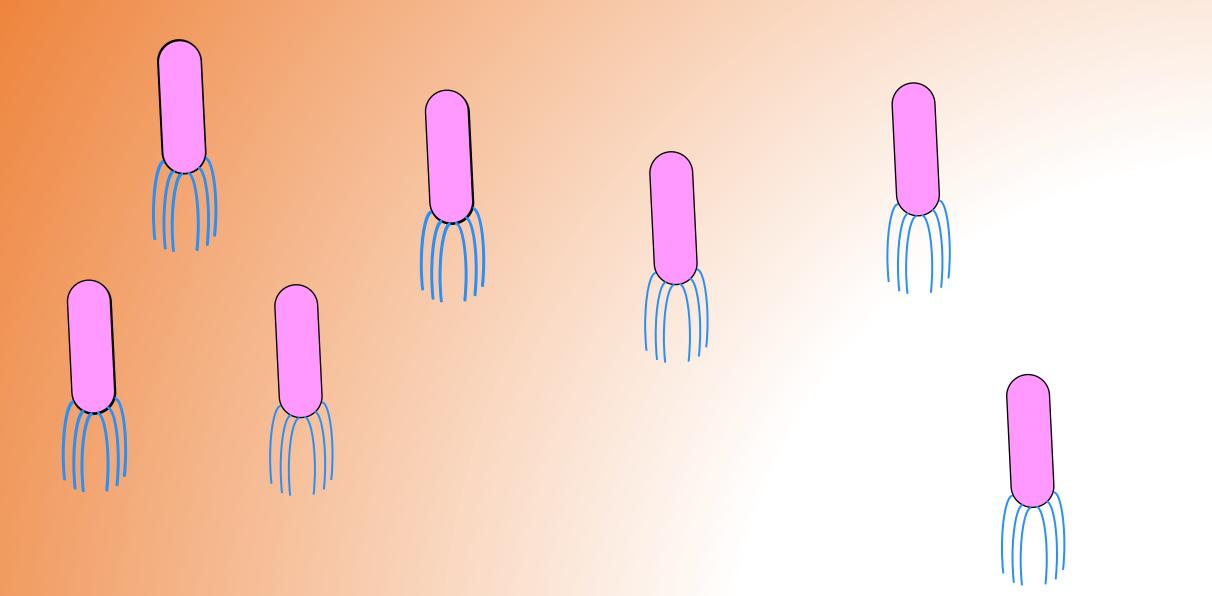
Traditional, non-carbapenem beta lactams are preferred over carbapenems when sensitivities allow to avoid overuse

Ceftolozane/Tazobactam, Ceftazidime/Avibactam, Imipenem/Cilastatin/Relebactam, and Cefiderocol are preferred for DTR-*P. aeruginosa* urinary tract infections

The same agents are preferred for infections outside the urinary tract, except for cefiderocol

Cefiderocol is preferred if DTR-P. aeruginosa produces metallo-beta-lactamases

Traditional, non-carbapenem beta lactams are preferred over carbapenems when sensitivities allow to avoid overuse


Ceftolozane/Tazobactam, Ceftazidime/Avibactam, Imipenem/Cilastatin/Relebactam, and Cefiderocol are preferred for DTR-*P. aeruginosa* urinary tract infections

The same agents are preferred for infections outside the urinary tract, except for cefiderocol

Cefiderocol is preferred if DTR-P. aeruginosa produces metallo-beta-lactamases

Combination therapy is not recommended for DTR-*P. aeruginosa* if susceptibility to novel agents is confirmed

Preventing Resistance

Shorter Durations of Therapy for HAP/VAP

Short-course versus prolonged-course antibiotic therapy for hospital-acquired pneumonia in critically ill adults

Study Design	Systematic review and meta analysis
Population	Patients hospitalized with HAP/VAP
Intervention	Short course of therapy (8 days or shorter)
Primary Outcome	 28 day mortality Recurrence of pneumonia 28-day antibiotic-free
Secondary Outcomes	 Duration of ICU and hospital stay Duration of hospital stay Duration of mechanical ventilation Mechanical ventilation free days

• Mortality attributable

Pugh et al. Cochrane Database Syst Rev. 2015

Shorter Durations of Therapy for HAP/VAP (cont)

Outcome	Odds Ratio	95% Confidence Interval
28-Day Mortality	1.18	(0.77, 1.8)
Pneumonia Recurrence	1.41	(0.94, 2.12)
28-Day Antibiotic Free Days	4.02	(2.26, 5.78)
Subsequent Infection with Resistant Organism	0.44	(0.21, 0.95)

Shorter Durations of Therapy for HAP/VAP (cont)

Outcome	Odds Ratio	95% Confidence Interva	al	
^{28-[} Summary:				
Pne A shorter duration of antibiotic therapy achieved similar				
28-I rates of mortality and recurrence with lower incidence of				
Sub resistant infections				

Recommendations from the IDSA for HAP/VAP

Patients being treated for HAP/VAP should receive a 7 day course of therapy rather than a longer duration

Shorter Durations in Bacteremia

Short-course versus prolonged-course antibiotic therapy for hospital-acquired pneumonia in critically ill adults			
Study Design	International, multicenter, retrospective review spanning 2009-2015		
Population	Adults (18 years and older) hospitalized with <i>P. aeruginosa</i> bacteremia		
Comparison	Compared 6-10 days of antibiotic therapy versus 11-15 days		
Primary Outcome	Composite of 30-day mortality and persistence/recurrence of bacteremia		

Outcomes of 7 Versus 14 Days of Therapy for Gram Negative Bacteremia

Outcome	Short Treatment (N = 273)	Long Treatment (N = 384)	All Cohort (N=657)	P-Value
30-Day Mortality	25 (9.2%)	41 (10.7%)	66 (10%)	0.523
Days of Hospital Stay – entire cohort, N=544 (Median, 25-75%)	13 (9-21)	15 (11-26)	15 (10-23)	0.002
Recurrent/Persistent Bacteremia	8/264 (3%)	21/375 (5.6%)	29/639 (4.5%)	0.124
Adverse Events				
C. difficile infection	3 (1%)	1 (0.3%)		0.322
Drug Discontinuation Due To Adverse Events	0	10 (2.8%)	10 (1.6%)	0.006

Data are presented as n (%) unless otherwise noted

Outcomes of 7 Versus 14 Days of Therapy for Gram Negative Bacteremia

Outcome	Short Treatment (N = 273)	Long Treatment (N = 384)	All Cohort (N=657)	P-Value		
30-Day Mortality	25 (2 22()			0.523		
30-Day Mortality Days of Hospital (Median, 25-75% A shorter course of a	Summary: A shorter course of antibiotic therapy was					
Recurrent/Persis associated with shorter length of stay and lower						
Adverse Events	discontinuation rates with no difference in mortality					
<i>C. difficile</i> in CISCONTINUATION Fates						
Drug Discontinuation Due To Adverse Events	0	10 (2.8%)	10 (1.6%)	0.006		

Data are presented as n (%) unless otherwise noted

Future Directions

Vaccines	Novel Antibiotics	Monoclonal Antibodies	Immune Globulins
Novel Diagnostics	Bacteriophage Therapy	Quorum Sensing Inhibition	Inhaled Antibiotics

Bringing it All Together

PT is a 67 year old male presenting to the emergency department complaining of fever and a painful sore on his heel

- PMH: Diabetes mellitus, hypertension, hyperlipidemia
- Social history: Smoker (1.5ppd x 55 years), denies EtOH or illicit drug use, endorses taking Epsom salt baths nightly for muscle pain
- VS: HR 96 | RR 22 | T 100.7 | BP 116/59 | SpO₂ 97% RA
- HbA1c: 9.6%, BMP within normal limits, WBC 14.7
- Physical exam reveals an ulcer on the right heel with tendons visible as well as eschar and surrounding erythema. Otherwise unremarkable

What empiric antibiotic therapy would be most appropriate for this patient?

What risk factors does this patient have for diabetic foot infection due to *Pseudomonas*?

- Smoking
- Frequent exposure of the extremity to water

Orthopedic surgery is consulted, and the patient is taken to the OR for debridement

What empiric antibiotic therapy would be most appropriate to add to vancomycin for this patient?

A. Ertapenem

- B. Meropenem/vaborbactam
- C. Piperacillin/tazobactam
- D. Gentamicin

Knowledge Check: Objective 3

PT's wound cultures following surgical debridement show no growth, indicating clear margins, and PT is discharged to a skilled nursing facility to recover

Unfortunately, PT is not compliant with his home insulin on discharge and returns to the ICU several weeks later for DKA

- On hospital day 3, PT develops shortness of breath, fever (102.1) and leukocytosis (WBC 15.2)
- Chest X-Ray: focal consolidation of the right upper lobe
- Sputum cultures are collected an the patient is started empirically on vancomycin and piperacillin/tazobactam

The sputum culture results, indicating resistance to current therapy. What would be an appropriate alternative antibiotic for PT?

- A. Ceftolozane/Tazobactam
- **B.** Meropenem/Vaborbactam
- C. Extended Infusion Piperacillin/Tazobactam
- D. Add Gentamicin for Dual Coverage

Pseudomonas aeruginosa					
Antibiotic	MIC	Breakpoint			
Piperacillin/Tazobactam	128	≤16			
Cefepime	32	≤8			
Ceftazidime	64	≤8			
Aztreonam	16	≤8			
Ceftolozane/Tazobactam	1	≤4			
Meropenem	4	≤2			

Knowledge Check: Objective 4

As he receives his 7-day course of ceftolozane/tazobactam, PT passes his spontaneous breathing trial, is extubated, and makes a full recovery

Key Takeaways

P. aeruginosa is a ubiquitous organism that can cause serious infections

Patients who are older, have recently been hospitalized, are immunosuppressed, or have received recent IV antibiotics are at risk

P. aeruginosa has a wide variety of resistance mechanisms, but current and emerging therapies give us ways to treat these infections

Pseudomonas aeruginosa: **Declassified**

William Norton Jr, PharmD

PGY1 Pharmacy Resident, Henrico Doctors' Hospital

November 8, 2023